Real- Time Onboard Vision

Get Started. It's Free
or sign up with your email address
Real- Time Onboard Vision by Mind Map: Real- Time Onboard Vision

1. Labs/People/Organizations

1.1. Imperial

1.1.1. Andrew Davis

1.2. Oxford

1.3. ETH

1.3.1. Lorentz Mayer

1.4. GRASP Lab

1.5. Andrew Zisserman, BMVA Distinguished Fellow

1.6. http://raffaello.name/

1.7. http://www.osrfoundation.org/

1.8. Boston Dymanics Atlas/PETMAN

1.9. Willow Garage

2. Pixhawk Middleware - MAVCONN Aerial Middleware

2.1. MIT's LCM

2.2. low-latency: Communication between processes is done in about 100 microseconds

2.3. Use of one protocol (MAVLink) on all subsystems (Linux, IMU, ground control)

2.4. ethzasl_sensor_fusion

3. Learning(Everything)

3.1. Computer Vision Course

3.2. SLAM Lecture by Andrew Davis

3.3. Visual Navigation for Flying Robots (Dr. Jürgen Sturm)

3.4. https://www.youtube.com/user/WillowGaragevideo

3.5. https://www.youtube.com/user/sparkfun

3.6. https://www.youtube.com/user/makemagazine

3.7. https://www.youtube.com/user/EEVblog

3.8. Semantic Object Recognition

3.9. ROS Channel (My YouTube)

3.10. ROS Industrial Consortium

3.11. Imperial Lecture Notes (Dropbox)

3.12. MilfordRobotics (YouTube)

3.13. SLAM Lectures

3.14. Bayes

3.14.1. https://www.youtube.com/channel/UCjtrtD-c6i2PxNiYs1BcJRg

4. Networking

4.1. UK

4.1.1. London

4.1.1.1. Nick Weldin (East London), R.O.S Lecture

5. Similar Projects (to Droidworx)

5.1. icarus-uav-system

5.2. Marcin

5.3. Projects USING PTAM

5.4. https://icoderaven.wordpress.com/tag/arducopter/

5.5. sFLY

6. SBC to APM via Mavlink - Is it Possible?

7. MavProxy

8. neuromorphic

9. Control Theory

9.1. Monte Carlo Simulation

9.2. Frequency Domain Analysis

9.3. loop closure

9.4. Time Domain Analysis

9.5. markov networks

9.6. Phase Portrait

9.7. controll loops and delay tolerances

9.8. EKF Kalman Filter

9.9. Topological Equivalence

9.10. Statistical Mechanics

9.11. Limit Cycle

9.12. Topological conjugacy

9.13. Phase Space

9.14. Laplace Transform

9.15. LEARNING

9.15.1. Brian (YouTube)

9.15.1.1. Broad Concepts in Control Theory

9.16. State estimation

10. COG

10.1. Visual Search

11. Electronics

11.1. Curent Draw

12. Integration

12.1. Semantic & Cognitive Robotics

12.1.1. RoboEarth

12.2. Emotiv EEG Control

13. ROS

13.1. ROS is not Real-Time(RTOS)

13.2. MAVLINK

13.3. RosCopter

13.4. ROS PTAM Package

13.4.1. ethzasl_ptam

13.4.1.1. Stephan Weiss

13.4.1.2. Papers

13.4.1.3. Camera functions well at 70m altitude sFly Test (ros package page)

13.5. RatSLAMROS

13.6. http://moveit.ros.org/

13.7. LCM (MIT)

14. Hardware

14.1. Vision Sensor

14.1.1. Carmine and Capri from Prime Sense

14.1.2. CCD vs CMOS Sensors

14.1.3. Structured light

14.1.4. time-of-flight camera

14.1.5. Shutter

14.1.5.1. Global Shutter

14.1.5.2. Rolling Shutter

14.1.6. Pixhawk's

14.1.6.1. Matrix Vision

14.1.6.2. e-Con

14.1.7. exposure/shutter speed

14.1.8. Odroid's Cam

14.2. Drone

14.2.1. 3DR RTF X8 2013

14.3. SBC

14.3.1. Gumstix

14.3.2. http://beagleboard.org/

14.3.3. ODroid U3 (Used by Pixhawk

14.3.4. ODroid

14.3.4.1. RobRoy Mag Editor

14.3.5. SBC Comparison

14.3.5.1. https://en.wikipedia.org/wiki/Comparison_of_single-board_computers

14.3.6. SBC Power

15. Math/Other

15.1. stereo matching

15.2. Bundle Adjustment

15.3. odometry

15.4. Model Theory

15.5. Regression

15.6. RANSAC

15.7. Group Theory

15.8. graph estimation

15.9. Relation

15.10. Equivalence Relation

15.11. Covariance Matrix

15.12. Disparity estimation

15.13. drift

16. Computer Vision

16.1. SLAM

16.1.1. PTAMM

16.1.2. JPL/NASA SLAM Use

16.1.3. MilfordRobotics

16.1.3.1. RatSLAM

16.1.3.2. SeqSlam

16.1.4. PTAM

16.1.5. Monocular SLAM and Real-Time Scene Perception - Andrew Davidson (Imperial)

16.1.6. MonoSLAM

16.1.7. IMU-VSLAM

16.1.8. SLAM++

16.1.9. why filter - network equivalent of kalman filter and its advantages (see MONOSLAM lecture, imperial)

16.1.10. loop closing event

16.1.11. SeqSLAM

16.1.12. slam is a joint estimation problem

16.2. TDL/Predator

16.3. Fundamental matrix (computer vision)

16.4. Active Vision

16.5. Occupancy Mapping (OcMaps) Place recognition (Imperial Notes

17. 3DR Arducopter

17.1. APM 2.6

17.2. https://code.google.com/p/ardupirates/

18. Fra

19. Frameworks

19.1. ROS

19.2. https://www.dronecode.org/

19.3. http://www.openframeworks.cc/